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GEOMETRICAL INFLUENCES ON THE RADIANT HEAT
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Abstract—In engineering practice, the heat transfer rate by radiation from hot objects to their surroundings
is usually calculated with the equation:
1 -1

However, this equation is exactly valid only if the arrangement of the surfaces 4, and A, is completely
symmetrical.
In this investigation the radiant transport was measured between a heated strip and a slender, cooled
cylinder, the strip width and the distance of the strip to the cylinder wall being varied.
In these situations, even though highly asymmetrical, the radiant transport was predicted with acceptable
engineering accuracy by the above equation.
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NOMENCLATURE

surface area [m?];

absorption (emission) coefficient ;

width of the strip [m];

radius of the cylinder [m];
distance from a point on surface 1
to a point on surface 2 [m];

temperatures [ °K];

angle with the normal to the surface
12);

measure of the eccentricity of the
strip in the cylinder (see Fig. 2);
radiation constant = 575 x 1078
[W/mz oK4] ;

net radiation transport [W];

heat flux by radiation per unit sur-
face area which arrives at a given

2-1, ¢ point of the surface 2(1) and which

* Present address: Centraal Laboratorium Koninklijke

Nederl

andse Hoogovens en Staalfabrieken, N.V., IJmuiden.

1 Present address: AKZO N.V., Arnhem.

689

comes from the total surface 1(2)
[W/m?];

total heat flux by radiation per unit
surface area which is emitted from
surface 1(2)ata given point [ W/m?].
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INTRODUCTION
THE CALCULATION of the heat transfer by
radiation involves simultaneous solution of two
integral equations. Even with a simple geometry
the mathematics are quite complex. Frequently,
therefore, an approximate solution to the prob-
lem is accepted. The foundation of this approxi-
mation will be explained below.

The net radiation transport ¢, between two
gray surfaces A, and A4, each with uniform
radiation properties and temperatures T, and
T, (see Fig. 1), is found as the solution to the
following system of equations:

¢;’,H2=J¢ COSﬂ‘COSBZdA. (1)
., cos f3, cos
¢s,2—*1 = J¢52*%rﬁdA2# (2)
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by alﬂT? + (1 = a)g 5.1, (3)
Py = a0 T3 + (1 — @) | .o, (4)
¢y = Aj o 1., dA; — Af Py 2.1 dA (5)

Equations (1) and (2) represent two simultaneous
integral equations, in which ¢} , ., and ¢; ,.,,
are the unknown functions. ¢, |, is the heat
flux per unit surface which arrives at a given
point in the surface 4, and which came from
the total surface A,. ¢ is the total heat flux per
unit surface which departs from the surface A4,
at a given point. @;| consists of two components,
viz. the emission from the surface A, itself and
the reflection of a portion of the radiation coming
from surface A,. The group (cos 3, cos ff,/ns?)
in the integral equations represents the fraction
of the radiation emitted from a surface element
dA, which arrives at a surface element dA4,
and vice versa (see Fig. 1).

F1G. 1. lllustration of the variables in equations (1)}+(5).

The simplification which may now be applied,
is that the unknown functions ¢, ,., and
¢, | ., may be replaced by the values obtained
by averaging the functions over the surface A4,
and A4,. Then the integrals in the equations (1)
and (2) are dependent upon the geometry only.
For each arrangement of the surfaces 4, and 4,
these integrals can be calculated in advance.
The system of simultaneous integral equations
is hereby reduced to a system of linear, algebraic
equations, which is much easier to solve. In this
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investigation the simplified theory was checked
experimentally in order to gain some insight into
the nature of the errors which are introduced
with the approximation.

The geometry was chosen such that the surface
A, wasenclosed by the surface A4,. The simplified
model predicts the net radiation transport
between A, and A, :

1 1 !
b, = Ao(T — T4 [ " fiﬁ( - 1)] - 16)
a, A \ua,

This is the relation which is frequently employed
in technical work to calculate radiation transfer
from hot objects to their cold surroundings.
Often moreover the surface A, is much smaller
than the surface A4, so that equation (6) may be
reduced to:

¢$, = Aa,0(T? — T3 {6a)

It is remarkable that according to equation (6)
the net radiation transport is independent of the
geometry : only the size of the two surfaces is of
importance. In this investigation surface A,
is a metal strip and surface A, a slender cylinder
(see Fig. 2).

F1G. 2. Topview of the arrangement of cylinder and strip.

With a fully symmetrical geometry, e.g. if
A, and A, are the surfaces of two concentric,
infinitely long, circular cylinders, then equation
(6) is at the same time the exact solution of the
system of equations (1)-(5). In this case ¢, , .,
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and ¢, ., are uniform on the surface 4, and
A,,respectively. If the geometry is not completely
symmetrical, e.g. a strip in a circular cylinder,
equation (6) is no longer expected to predict the
net transfer. Now the resolution of the system
of equations (1)~(5) will be of the following form :

by = A0o(TY — 1) Q7" (N

where Q is a factor which depends only upon the
geometry and the radiation properties. If the
geometry is fully symmetrical then, according to
equation (6), the factor Q must be:

1 A (1
Q:Z+A‘2<Z—l)' (8)

The purpose of the experiments was to determine
how much the true value of Q in the case of a strip
in a cylinder deviates from the value predicted
by equation (8).

EXPERIMENTAL
The principle of the measurements is as
follows: a metal strip heated electrically is
placed in an evacuated circular cylinder in the
manner shown in Fig. 2. For various widths of
the strip and various values of the eccentricity
(see Table 1), the heating power of the strip

Table 1. Data on the experiments performed

Strip
width A, (mm?) AyA,
(mm)

2:6 104 x 10° 004
52 214 x 103 008
100 407 x 103 015
149 675 x 103 0225
198 812 x 103 0300
245 995 x 103 0370
350 142 % 103 0525

Inside diameter of cylinder: 42 mm. Length of
cylinder: 450 mm, ¢ = 0-96; 0-90; 0-75; 0-60;
0-45: 0:30, T, = 300°C; 400°C; 500°C.

was measured as a function of the temperature
of the strip T;, the temperature of the cylinder

T, being held as nearly constant as possible.
The heating power is equal to the heat transfer
by radiation. Thus with the aid of equation (7)
the quantity Q can be calculated.

The cylinder was made from a stainless steel
tube which was honed on the inside in order to
obtain a “‘dull gleaming” surface. This was done
to assure diffuse reflection. The cylinder is so
slender that it can be considered infinitely
long. A cooling jacket was placed around the
cylinder. With the aid of cooling water the cylin-
der is kept at constant temperature T,. This
temperature varied a little from measurement
to measurement due to fluctuations in cooling
water temperature: the minimum value of T,
was 5°C, the maximum 18°C. Because T, is
very much higher than T, the influence of this
variation on the value of Q is however very small.
The cylinder was closed tightly by two cover-
plates which were insulated electrically from the
cylinder. The heating current was supplied to
the strip via the covers. To exclude heat transfer
through the air, the cylinder was connected to a
vacuum pump, which evacuated the cylinder
to a pressure of about 5 x 15~ ° mm mercury.

The strips were also made of stainless steel,
0'1 mm thick. The strip was clamped on one
end in a copper block which was affixed to one
of the covers and on the other side in a block
which was connected with the second cover via
a strong spring. This spring maintained a ten-
sion in the strip, even as it became longer at
higher temperatures. The temperature of the
strip T, was measured with five thermocouples
which were spot welded to the strip. The tem-
perature T; turns out to be uniform within 1°C.
The thermocouple leads were all brought outside
through glass insulating bushings in one cover
plate. The strip was heated by alternating current
via a regulating transformer. The electrical
energy supplied can be calculated from the
current through and the voltage difference across
the strip. In the steady state this energy is equal
to the net radiation transport ¢,, provided that
there is no other sort of heat transfer from the
strip. Heat transfer from the strip may take place,
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Fi.. 3. The dependency of Q upon 4,°4, and T, at & = 096,

other than by radiation, by means of:

1.
2.

It

conduction via the thermocouple leads,
conduction and free convection to the air
in the cylinder,

. conduction through the strip to the cold

covers.
appeared that heat losses via the thermo-

couple leads and via the strip were negligibly

“obne

small. The pressure in the cylinder is so low
that the heat transfer through the air is also
negligible. The net radiation transport is thus
indeed equal to the electrical energy supplied.

RESULTS
Some results of the measurements are given in
the Figs. 3-5. In these figures Q is shown as a

03
A4, /4,

FiG. 4. The dependency of Q upon 4,- A4, and T, at & = (°60.
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FiG. 5. The dependency of Q upon A,/4, and T, ate = 0:30.

function of A,/4, at T, equal to 300, 400 and
500°C; each of the three figures represents one
value of g, viz. 0-96, 0-60 and 0-30. The maximum
possible value of 4,/A4, (for the given ¢) is also
indicated in each figure*. In addition to these
three values of ¢, measurements were also made
ate = 09,075 and 0:45.

In all cases the relationship between Q and
A,/A, at constant ¢ and constant strip tem-
perature appeared to be linear. This is in accor-
dance with equation (8). The greatest deviation
of a single point is about 5 per cent; a discrepancy
well within the expected accuracy of the measure-
ments : the relative, possible error is estimated
to be 4 10 per cent.

The absorption coefficients are only a function
of temperature, if the radiation surfaces can be
considered as gray. If furthermore the simplified
theory [equation (6)] is valid, the values of
Q at any given temperature must yield the same
function of A,/4, for various values of &
To check if the simplified theory with only tem-
perature dependent absorption coefficients could
be used to describe the experimental results,
the values of a, and a, were calculated from each
set of experiments representing Q as a function
of A,/A,. The results are assembled in Table 2.
It appears from these results that if for a constant
strip temperature the absorption coefficients a,
and a, areconsidered to be constant,independent

Table 2. Absorption coefficients as functions of T, and ¢

T,(°C) £ u, a, T,(°C) £
300 096 016 053 400 096
090 016 051 090
075 016 052 075
0-60 017 0-51 060
045 016 054 045
030 o7 044 030

a, a, T,(C) £ a, a,
019 048 500 096 023 048
019 0-50 090 023 052
019 052 075 023 048
019 054 060 022 052
019 055 045 022 049
0-20 044 030 024 038

* (1 — &) is the measure for the eccentricity ; see Fig. 2.
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of ¢, and, hence, if the surfaces are treated as being
gray, the simplified theory (6) holds even at high
eccentricities (04 < ¢ < 1). At ¢ = 0-3 the value
of a, is about 20 per cent lower than at higher
¢’s. In this region of eccentricity where the strip
comes close to the cylinder wall, Q becomes
apparently dependent on &

CONCLUSION
The experiments have produced the surprising
result, that for the geometry considered, the
measurements of net radiation transport match
the simple theory of equation (6), assuming gray
surfaces,evenforhigheccentricities(0'4 < ¢ < 1).
We expect that the simplifying assumptions

W. DEN HARTOG
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underlying equation (6) are not so severe and
that the engineering practice of using equation
(6) also in situations which seem well outside the
theoretical restrictions of this theory can be
justified. Therefore, the authorsfeel thatengineers
who extensively use the equation (6) and try
to do so consciously, would welcome a deeper
analysis than that is already available in litera-
ture [ 1] as to how far its underlying restrictions
can be relaxed.
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INFLUENCE DE LA GEOMETRIE SUR LE TRANSFERT THERMIQUE PAR RAYONNEMENT
A L’INTERIEUR D’UN ESPACE CLOS.
Résumé—Dans la pratique de I'ingénieur, le flux thermique rayonné par des objets chauds est générale-

ment calculé a partir de I’équation:

¢, = A,0(T? — T‘;)[

)

2

Cependant cette équation n’est valable seulement que si I’arrangement des surfaces 4, et A, est compléte-

ment symétrique. Dans cette étude le transport par rayonnement est mesuré entre une bande chauffée

et un cylindre mince refroidi, la largeur de la bande et la distance a la paroi du cylindre pouvant étre

variées. Bien que ces conditions soient fortement asymétriques, le transport par rayonnement est prédit
par I’équation ci-dessus avec une précision acceptable pour 'ingénieur.

DER GEOMETRIEEINFLUSS AUF DEN WARMEAUSTAUSCH DURCH STRAHLUNG
INNERHALB EINES GESCHLOSSENEN RAUMES
Zusammenfassung— In der Ingieurpraxis wird der Warmestrom durch Strahlung von hetssen Objekten
zu ihrer Umgebung versuchsweise mit der Gleichung berechnet:

¢, = 4, ATt — T;)':

1 A, (1
- .+ —_— -
oy Ay N

o)

L))

Diese Gleichung ist jedoch nur dann exakt, wenn die Anordnung der Oberflichen 4, und 4, vollkommen
symmetrisch ist. In dieser Untersuchung wurde der Strahlungsstrom zwischen einem geheizten Band und
einem schlanken, gekiihlten Zylinder gemissen, wobei die Breite des Bandes und der Abstand des Bandes

von der Zylinderwand variiert wurden.

Bei diesen Anordnungen, sogar bei dem hochgradig asymmetrischen, wurde der Strahlungsstrom durch
die obige Gleichung mit annehmbarer Genauigkeit angegeben.

BJAUSIHUE FEOMETPHN HA JOYUHUCTbIYM HEPEHOC TEILIA B SBAMKHYTOM
MPOCTPAHCTBE

:\]’!llOTﬂuHﬂ—B HHH{CHGPH()“ HPAKTHRE CROPOCTDL HEPEHOCA TEITA H3AVHCHHEM 0T HAPeTHIX
HPEeMeTOn B ORPYIKABIIY I CPeLY OOLITHO pAcCHITBIBACTCH 11O VPABHEHNK) {

e
¢y = Aro(T = v) al+A2 as ’



GEOMETRICAL INFLUENCES ON HEAT TRANSFER

Opnako, 9T0 ypaBHeHME ABJAETCA TOUHBIM TOJBLKO, €CJIH DPACHOJIOKeHHe [[0BEPXHOCTE!
Ai 4 Ap DOTHOCTHIO CUMMETPHYHO. B aroif pafoTe npoBOAMJINCH U3MEPEHUH IYUNCTOO
IIEPEHOCA MY HATPeTOil MOJIOCKOH M TOHKHMM OXJIaH{IeHHLIM UMIMHAPOM, IPUYEM UIHPUHA
HOJIOCKU M PACCTOAHUE MeHLy Heil U CTeHKOH UMIMHAPA MEHFJINCD.
B rakux ycnosusx, fAaske ecii MOBEPXHOCTU PACIOIOHKEHE COBEPILEHHO HECUMMETPUYHO,
JYYUCTHI TIePEHOC PACCUNTHIBAICA C AOMYCTHMOM [IIA NpaTHYeCKUX lejeil NorpelIHoCcTbo
¢ MOMOIBI0 JAHHOTO ypaBHEHMA.
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